Time : 3 Hrs.                                                                                                                                            Theory : 100 Marks

Term Work : 25 Marks



All syllabus in single     Download  PDF  .

1.   State − Space Analysis of Control System :

Concept  of  state-space,   and  state   model  for  Linear  Systems  −  SISO  and  MIMO  systems, Linearization, state model for Linear continuous time system – State-Space representation using phase variables,  Phase  variable  formulation  for  transfer  function  with  poles  and  zeros,  state  space representation   using   canonical   variables,   derivation   of   transfer   function   from   state   model, Diagonalization,  eigenvalues  and  eigenvectors,  Solution  of  State  equations  −  properties  of  state transition  matrix,  computation  of state  transition  matrix  using  Laplace  Transformation,  Cayley  − Hamilton theorem.


2.   Controller and Observer Design using State-Space :

Concept of controllability  and observability, definitions,  phase variable form, properties, effect of pole-zero cancellation in transfer function.

State  Feedback and  Pole placement − Stabilizability, choosing pole locations, limitations of state feedback.

Tracking Problems − Integral control.

Controller design − for phase variable form, by matching coefficients, by transformation.

Observer design  −   for observer canonical  form, by observability matrix,  by transformation,  by matching coefficients.

Control using observers, separation property

Reduced order observer  design  −   separation property, reduced order observer transfer function

Application of above.


3.   Introduction to Compensator :

Analysis of the basic approaches to compensation, cascade compensation, feedback compensation, Effect of measuring elements on system performance, block diagram of automatic control system. Derivative and integral error compensation.


4.   Compensator Design using Root Locus :

Improving   steady-state    error   and   transient   response   by   feedback   compensation,   cascade compensation, integral, derivative compensation, Lag, Lead, Lag-Lead compensation.


5.   Compensator Design using Frequency Response  :

Steady-state error characteristics of Type 0, 1 and 2 systems, Time delay, transient response through gain adjustment, Lag, Lead, Lag-Lead compensation.


6.   PID Compensator Design :

Tuning rules for PID controller, Ziegler-Nichols  rules, Designing PID controller using Root-Locus technique.







Reference :

1.   Modern Control Engineering (K. Ogata) Prentice Hall of India – 2002 (4th  Edition).

2.   Control Systems Engineering (Norman S. Nise) John Wiley and Sons Inc. – 2000.

3.   Control  Systems  Principles  and  Design  (M. Gopal)  Tata  McGraw  Hill,  New  Delhi  –  2002  (2nd


4.   Design of Feedback Control Systems (Stefani, Shahian, Savant, Hostetter) Oxford University Press –

2007 (4th  Edition).

5.   Modern Control Systems (Richard C. Dorf, Robert H. Bishop) Addition − Wesley – 1999.

6.   Control System Engineering (I.J. Nagrath  & M. Gopal) New Age International (P) Ltd., Publishers –

2000 (3rd Edition).

7.   Automatic Control Systems (B.C. Kuo, FaridGdna Golnaraghi) PHI – 2003 (7th  Edition).

8.   Control Engineering − an Introductory Course (Jacqueline  Wilkie, Michael Johnson,  Reza Kalebi) Palgrave – 2002.

9.   Control Engineering – Theory & Practice (M.N. Bandopadhay) PHI – 2003.


All syllabus in single     Download  PDF  .